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Calculating Particle Tunes and Synergia
Results
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Calculating Particle Tunes

@ The simplest definition of tune is the number of full oscillations a
particle experiences during the course of a single turn.

@ Given a particle track, the Fast Fourier Transform makes it seemingly
trivial to find the dominant frequency, and hence the tune.

o numpy.fft.fft is the FFT function, which will return a complex vector

o abs(vec) will return a vector of the absolute values of the complex
elements of vec

o numpy.argmax(vec) will return the index of the largest value in vec

e The tune is just the position of the peak divided by the number of
turns in the sample.
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Calculating Particle Tunes (2)

o Why did | say seemingly trivial?
o There is usually noise in the lowest (few) frequency(ies).
e Too many samples may lead to noise in other channels that will
dominate the actual tune peak.
e The NyquistShannon sampling theorem tells you that
@ you should only look in the lowest half of the FFT result.
@ you need at least twice as many samples per turn as the tune if you
want to see the integer part.

@ you need at least two samples per turn if you are only interested in the
fractional tune.
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Applications: Fermilab Main Injector (Project X)

Eric Stern, JFA
o Significant effort spent understanding convergence of space charge
calculation
e grid size
e number of macroparticles
e number of kicks per turn

@ Includes generation of nonlinearly-matched initial beam

o very full RF bucket means very nonlinear longitudinal dynamics
o using CHEF's arbitrary-order normal form calculation
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MI kicks per turn study
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MI grid and macroparticle study

y emittance for different number of kicks per line
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Compromise between running time and accuracy:
0.5M macroparticles, 32x32x128 grid
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Space charge and nonlinear optics studies for Mu2e!

@ Beam to be extracted from Fermilab Debuncher using (nonlinear)
resonant extraction
@ Accumulator/Debuncher required to handle 10° times more particles
than current operating conditions
o Space charge is the biggest worry.

1J. Amundson, A. Macridin, L. Michelotti, C. S. Park, P. Spentzouris, E. Stern
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Sextupoles without space charge

Beam with linear magnets only
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Beam with (nonlinear) sextupoles
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Nonlinear magnets distort the phase-space structure of the beam.
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Effects of space charge without sextupoles

@ In a fully linear linear problem, all particles have the same (“bare")
tune.
@ Space charge creates a “tune footprint”
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e Two-dimensional densities (colors) are plotted on a logarithmic scale
@ One-dimensional densities are plotted on a linear scale

@ Bin sizes are one unit of tune resolution
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Combining sextupoles and space charge

Highly non-trivial interaction between the two effects. ..
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... leading to unacceptably large losses. Results are understood in terms of
resonance theory. Resonances occur when

m+ lv, + quy, = vy

for integer m,/,q.
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Resonance lines in the tune footprint
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Resonance lines in the tune footprint
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Applications: GSI SIS18 Benchmarking Exercise
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emittance growth in the GSI SIS18
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